34 research outputs found

    Coordinated analysis of two graphite grains from the CO3.0 LAP 031117 meteorite: First identification of a CO Nova graphite and a presolar iron sulfide subgrain

    Get PDF
    Presolar grains constitute remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in-situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of 5-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.Peer ReviewedPostprint (author's final draft

    Rare earth element abundances in presolar SiC

    No full text
    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5–3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.TRI acknowledges support from the Australian Research Council– Australia grants DP0342772 and DP0666751. LN and CA acknowledge support from NASA grant NNX10AI63G

    Origin and Evolution of Prebiotic Organic Matter as Inferred from the Tagish Lake Meteorite

    Get PDF
    The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration and at least some molecules of pre-biotic importance formed during the alteration

    Nuclear astrophysics: the unfinished quest for the origin of the elements

    Get PDF
    Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in Physics" (version with low-resolution figures

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Europium s-process signature at close-to-solar metallicity in stardust SiC grains from asymptotic giant branch stars

    Get PDF
    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of ∌1.5-3 M carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The Eu fractions [fr( Eu) = Eu/(Eu+Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr( Eu) values derived from our measurements agree well with fr( Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr(Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr(Eu) values. The SiC aggregate yields a fr(Eu) value within the range observed in the single grains and provides a more precise result (fr(Eu) = 0.54 ± 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the Sm(n, Îł) stellar reaction rate.Peer reviewedFinal Accepted Versio

    Astrophys. J.

    No full text

    Publ. Astron. Soc. Aust.

    No full text

    Publ. Astron. Soc. Aust.

    No full text

    Ba isotopic compositions in stardust SiC grains from the Murchison meteorite: Insights into the stellar origins of large SiC grains

    No full text
    We report barium isotopic measurements in 12 large (7-58 mu m) stardust silicon carbide grains recovered from the Murchison carbonaceous chondrite. The C-, N-, and Si-isotopic compositions indicate that all 12 grains belong to the mainstream population and, as such, are interpreted to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. Barium isotopic analyses were carried out on the Sensitive High Resolution Ion Microprobe -Reverse Geometry (SHRIMP-RG) with combined high mass resolution and energy filtering to eliminate isobaric interferences from molecular ions. Contrary to previous measurements in small (< 5 lm) mainstream grains, the analyzed large SiC grains do not show the classical s-process enrichment, having near solar Ba isotopic compositions. While contamination with solar material is a common explanation for the lack of large isotopic anomalies in stardust SiC grains, particularly for these large grains which have low trace element abundances, our results are consistent with previous observations that Ba isotopic ratios are dependent on grain size. We have compared the SiC data with theoretical predictions of the evolution of Ba isotopic ratios in the envelopes of low-mass AGB stars with a range of stellar masses and metallicities. The Ba isotopic measurements obtained for large SiC grains from the LS + LU fractions are consistent with grain condensation in the envelope of very low-mass AGB stars (1.25 M-circle dot) with close-to-solar metallicity, which suggests that conditions for growth of large SiC might be more favorable in very low-mass AGB stars during the early C-rich stages of AGB evolution or in stable structures around AGB stars whose evolution was cut short due to binary interaction, before the AGB envelope had already been largely enriched with the products of s-process nucleosynthesis. (C) 2013 Elsevier Ltd. All rights reserved
    corecore